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Introduction

Many factors which could affect visual acuity (VA) with
night vision goggles (NVGs) already have been studied, e.g.,
night sky condition and target contrast (Levine and Rash, 1989a
and 1989b; Wiley, 1989; Kotulak and Rash, 1992), NVG generation
(Miller et al., 1984; Kotulak and Rash, 1992), nuclear
flashblindness protection (Levine and Rash, 1989a and 1989b),
chemical protective masks (Miller et al., 1989; Donohue-Perry,
Riegler, and Hausman, 1990), signal-to-noise ratio (Riegler et
al., 1991), interpupillary distance misadjustment (King and
Morse, 1992), and instrument myopia (Kotulak and Morse, 1992,
1994a, and 1994b; Kotulak, Morse, and Wiley, 1993). Another
factor which could influence NVG VA is decreased unaided VA,
i.e., VA without NVGs; however, relatively little is known about
it.

Kim (1982) investigated the influence of astigmatism on NVG
VA; however, he did not report the unaided VA of his subjects.
Hoover (1983) measured both unaided and aided VA; however, most
of Hoover's subjects suffered from vision loss due to eye
disease. Therefore, it is not certain whether Hoover's results
are relevant to healthy populations.

In the current report, we present measurements of both
unaided and aided VA on healthy, emmetropic subjects in order to
determine whether there is a correlation between the two. The
theoretical basis for such an association comes from the
following: When two optical systems of unequal resolving power
are combined, the resolution of the combined system can be
predicted by the equation below, in which RH and RL represent the
resolving powers of the high and low resolution elements
respectively, and Rc represents the resolving power of the
combined system (Farrell and Booth, 1984).

1 1 1

RC"1 7  RN'7 RL1.7

An observer viewing through NVGs can be thought of as such a
system, in which the eye is the high resolution element when the
observer is emmetropic. Figure 1 is derived from the above
equation by holding RL constant at 20 cycles/degree (cpd), the
approximate resolution limit of current NVGs (Figure 2), and
varying RH over a wide range. The equation predicts that the
resolving power of the combined system is affected by changes in
R., especially in the region at and below the eye's maximum
resolution, which is approximately 40 cpd.
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Figure 1. The relationship between the resolving power of the
high resolution element and the combined system, given
that the resolving power of the low resolution element
is held constant. This model was derived from experi-
ments with photographic systems (Farrell and Booth,
1984).
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Figure 2. The ANVIS spatial modulation transfer function under
varying levels of ambient luminance (Kotulak and
Morse, 1994).
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In this report, we also explore other factors which could
influence NVG VA among emmetropes, namely refractive error and
experience as a visual observer (flight experience and NVG
experience). In the strictest sense, refractive error and
emmetropia are mutually exclusive. However, emmetropes are
commonly defined clinically as persons who have a distance VA of
at least 20/20 in each eye, a condition which does not preclude
small refractive errors (Hirsch, 1945).

Subjects

Sixteen volunteer subjects, who were either U.S. Army
aviators (n - 12) or flight school students (n = 4), were
recruited for the experiment. All subjects had unaided visual
acuities of at least 20/20 in each eye, and were free from eye
disease and other ocular anomalies. All of the subjects were
cleared to fly without spectacles. Table 1 gives descriptive
statistics regarding age, flight and NVG experience, and
refractive error for the subjects. The refractive error data
probably overestimate the degree of myopia by about 0.25 diopters
(D) due to instrument myopia elicited by the autorefractor (Miwa,
1992).

Table i.
Descriptive statistics of subjects.

Variable Mean SD Median Range

Age (years) 27.1 4.9 27.0 22 to

Total flight 988.1 1347.2 300.0 68 to
hours 4000

Flight hours 84.7 139.1 21.0 0 to
with NVGs 500

Equivalent -0.35 0.37 -0.44 -0.88
sphere (D) to 0.50

Sphere (D) -0.16 0.39 -0.25 -0.63
to 0.63

Cylinder (D) -0.39 0.26 -0.25 -0.13
to_-1.00
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Apparatus

The NVG used in the study was the AN/AVS-6 Aviator Night
Vision Imaging System {ANVIS} (Jenkins and Efkeman, 1980). ANVIS
is a unity-magnification pair of binoculars which electronically
amplify ambient light and thus provide photopic vision under
night sky conditions. ANVIS consists of two identical
monoculars, the main components of which are an objective, a
third-generation image intensifier, and an eyepiece. The ANVIS
modulation transfer function (Figure 2) demonstrates that the
phosphor image is spatially lowpass filtered. As a result, VA
with ANVIS under optimum conditions is only 20/35, and it gets
worse with decreasing night sky luminance (Kotulak and Rash,
1992). The output luminance of ANVIS falls off steadily with
decreases in input luminance when the latter is less than quarter
moon, the lower limit of the ANVIS automatic gain control. This
allows the ANVIS display luminance to be manipulated as an
experimental variable.

The visual stimuli were high (Bailey and Lovie, 1976) and
low (Bailey, 1982) contrast Bailey-Lovie acuity charts. Two
versions of the chart, differing only in letter sequence, were
used at each level of contrast. These charts were chosen because
their scale is five times finer than that of Snellen-like charts,
and their test-retest reliability is twice as great (Bailey et
al., 1991). In addition, Bailey-Lovie charts incorporate an
equal-interval scale that permits the use of parametric
statistics (Lovie-Kitchin, 1988).

The contrast of the Bailey-Lovie optotypes was calculated
from the equation below, in which LB and LL represent background
and letter luminance respectively.

100 (LB - LL)
LB

Photometrically-measured luminance was used to calculate target
contrast, both on the NVG phosphor screen under simulated night
sky conditions (labelled "Aided" on Table 2), and on the
charts themselves under photopic conditions (labelled "Unaided"
on Table 2). Table 2 also gives the background luminance (i.e.,
the luminance of the white portion of the chart) for the aided
and unaided conditions.
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Table 2.
Target parameters.

Aided Unaided
Parameter High Low High Low

Contrast (percent) 62 12 98 21

Luminance (cd/m2) 6.5 6.5

Procedures

VA always was measured under binocular conditions. The same
charts were used for aided and unaided viewing. VA thresholds,
which were defined as the common logarithm of the minimum angle
of resolution {log MAR} (Bailey and Lovie, 1976), were recorded
using Bailey-Lovie scoring procedures (Bailey and Lovie, 1976),
without a time limit, and without reinforcement. Contrast
changes were made by switching between charts. The order of
presentation of the stimuli was randomized.

Prior to making focus adjustments, the subjects were trained
to reach a most-plus endpoint, i.e., use the most plus (or least
minus) dioptric power that was required for best vision. This is
consistent with established clinical technique for refraction.
Eyepiece power was verified with a dioptometer. Refractive error
was measured objectively with an autorefractor.

Design and statistical analysis

The dependent variables were high and low contrast aided VA
measured with the NVG eyepieces focused at infinity, and high and
low contrast aided VA measured with the NVG eyepieces focused by
the users for best vision. The design was within subjects. The
correlation of the dependent variables with various candidate
independent variables was tested by simple and multiple linear
regression. The independent variables were high and low contrast
unaided VA, total flight hours, NVG flight hours, and refractive
error. Three refractive error components were considered
separately, i.e., sphere, cylinder, and equivalent sphere (one-
half the cylinder power plus the sphere power).
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Figure 3. The distribution of uncorrected unaided visual acu-
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Figure 5. The relationship between uncorrected unaided VA and
the absolute value of the astigmatic component of the
refractive error for nominal emmetropes. The rela-
tively low chart luminance, which was intended to
match that of the NVG display, resulted in elevated
acuity thresholds.

Bivariate relationships

Figures 3 and 4 give the distributions of unaided VAs for
our nominally emmetropic subjects at high and low target
contrasts, respectively. Note that in Figure 3, two subjects had
VAs less than 20/20. This was most likely due to the test
luminance of 6.5 cd/rn (Sheedy, Bailey, and Raasch, 1984), which
is considerably lower than the 85 cd/r that is recommended for
the clinical measurement of VA (National Research Council, 1979).
The luminance of 6.5 cd/r was selected because it matched theANVIS display luminance (Table 2).

The variability in VA among emmetropes is due, at least
partially, to uncorrected refractive error, as shown in Figure 5
(see also Table 1). Figure 5 demonstrates that unaided VA to
high contrast letters is correlated with the amount of
astigmatism. Similarly, the ANVIS VA of emmetropes also can be
related to uncorrected refractive error. For example, Figure 6
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Figure 6. The relationship between uncorrected NVG VA and the
absolute value of the spherical component of the re-
fractive error for nominal emmetropes. The NVG eye-
pieces were focused to infinity.

reveals that aided VA is correlated with the power of the
spherical component of the refractive error when target contrast
is low and the instrument eyepieces are focused to infinity.

Figure 7 demonstrates that there is also a correlation
between aided and unaided VA for emmetropes when the eyepieces
are focused at infinity. This relationship is statistically
significant at both high (R = 0.73, p = 0.001) and low (R = 0.61,
p = 0.01) contrast. However, the relationship ceases to be
significant when the focus is adjusted by the user for best
vision (R = 0.18, p = 0.5 at high contrast; R = 0.39, p = 0.13 at
low contrast).

Multivariate relationships

Multiple regression was used to predict aided VA by building
a model which includes only those independent variables that add
markedly to the strength of prediction. Tables 3 and 4 list the
variables that were tested as potential predictors of aided VA
for the fixed infinity focus condition, and Tables 5 and 6 list
the variables that were tested for the adjustable focus

10
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Figure 7. The relationship between uncorrected NVG VA and un-
corrected unaided VA for nominal emmetropes. The NVG
eyepieces were focused to infinity. Table 1 gives the
values for high and low contrast for the aided and un-
aided VA measurements.

condition. In these tables, partial correlation is equivalent to
Pearson's R in simple linear regression, and F-to-enter is tv'e
test statistic for determining whether R is significant.

Fixed ifniyfocus condition

Aided visual acuity for high contrast targets

The list of candidate independent variables to predict aided
VA for high contrast targets is given in Table 3. The variables
that were selected from this list are given by the equation be-
low, in which AA represents aided acuity, Au represents unaided
acuity (high contrast), and NL represents the log of NVG flight
hours (a log transform was performed because the distribution of
NVG flight hours was asymmetric).

AA - 0.50Au - O.O8NL + 0.58

The relative contribution of each independent variable to the
model can be inferred from the percent of variance explained.
Unaided VA, the most predictive variable (highest F-to-enter
value in Table 3), alone explained 37 percent of the variance of
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aided VA, i.e., R2 - 0.37. The combination of unaided VA and log
NVG hours explained 60 percent of the variance of aided VA, i.e.,
Re - 0.60. Thus, the addition of log NVG hours to the model
increased the prediction of the dependent variable by 23 percent
(60 - 37 - 23).

Table .
List of candidate independent variables to predict aided

visual acuity (high contrast) when the eyepiece
is focused at infinity.

Variable Partial F-to-enter

correlation

Unaided VA 0.61 6.50

Equivalent sphere 0.49 3.45

Sphere 0.39 1.99

Cylinder 0.41 2.16

Flight hours -0.32 1.25

Log flight hours -0.38 1.84

NVG hours -0.49 3.40

Log NVG hours -0.59 5.97

Table j.
List of candidate independent variables to predict

aided visual acuity (low contrast) when
the eyepiece is focused at infinity.

Variable Partial F-to-enter

correlation

Unaided VA 0.60 6.04

Equivalent sphere 0.30 1.05

Sphere 0.42 2.14

Cylinder 0.53 4.30

Flight hours -0.57 5.39

Log flight hours -0.60 6.06

NVG hours -0.36 1.60

Loa NVG hours -0.43 2.45

12



Table I.
List of candidate independent variables

to predict aided visual acuity (high contrast)
when the eyepiece is focused for best vision.

Variable Partial F-to-enter

correlation

Unaided VA 0.29 1.01

Equivalent sphere 0.17 0.33

Sphere 0.18 0.37

Cylinder 0.21 0.53

Flight hours 0.09 0.09

Log flight hours 0.06 0.04

NVG hours -0.28 0.93

Log NVG hours -0.32 1.26

Table
List of candidate independent variables to predict

aided visual acuity (low contrast) when
the eyepiece is focused for best vision.

Variable Partial F-to-enter
correlation

Unaided VA 0.34 1.43

Equivalent sphere -0.09 0.08

Sphere 0.22 0.58

Cylinder 0.17 0.33

Flight hours -0.20 0.46

Log flight hours -0.11 0.14

NVG hours -0.09 0.09

SLog NVG hours -0.11 0.14

13



I I II

Aided visual acuity for low contrast targets

The list of candidate independent variables to predict aided
VA for low contrast targets is given in Table 4. The variables
that were selected from this list are given by the equation
below, in which AA represents aided acuity, Au represents unaided
acuity, and FL represents the common logarithm of total flight
hours (a log transform was performed because the distribution of
total flight hours was asymmetric).

AA = -0.0 4 FL + 0.34Au + 0.82

The most predictive variable was log flight hours (highest F-to-
enter value in Table 4), whicP alone explained 36 percent of the
variance of aided VA, i.e., R - 0.36. The combination of log
flight hours and una.ded VA explained 53 percent of the variance
of aided VA, i.e., R - 0.53. Thus, the addition of unaided VA
to the model increased the prediction of the dependent variable
by 17 percent (53 - 36 = 17).

adr stedfocus aided codt

When the NVG focus was adjusted by the user for best vision,
aided VA was not predictable by any of the candidate independent
variables. This was true at both levels of contrast (Tables 5
and 6).

We found that the between-subject variations in unaided VA
of nominal emmetropes do manifest themselves as corresponding
fluctuations in aided VA when the NVG eyepieces are focused at
infinity. This effect is robust with respect to changes in
target contrast. However, the effect diminishes significantly
when the eyepieces are focused by the user for best vision. This
suggests that the relationship between unaided and aided VA among
eumetropes is mainly due to an optical factor, e.g., clinically
insignificant refractive error.

Multiple regression revealed that, when the eyepieces were
focused at infinity, unaided VA and experience as a visual
observer (i.e., log NVG hours and log flight hours) were
important determinants of NVG VA. At high contrast, unaided VA
explained the greatest proportion of the variance of NVG VA. At
low contrast, total flight hours explained the greatest
proportion of the variance of NVG VA. This suggests that
experience as a visual observer is more important under degraded

14



stimulus conditions than it is under optimal conditions.
Refractive error was not selected for any of the multiple
regression models although it is related to aided VA (Figure 6).
This is because refractive error does not explain any of the
variability of NVG VA that is not already explained by unaided
VA.

Our data on the relationship between unaided and NVG VA
among emmetropes is consistent with data from other studies in
which the subjects had reduced unaided VA either due to
astigmatisa. (Kim, 1982) or to eye disease (Hoover, 1983). The
data from all three studies are fit well by the same regression
line (R - 0.87) (Figure 8). Since there appears to be no
significant difference between Kim's data from ametropes and
Hoover's data from visually impaired subjects, perhaps the source
of reduced unaided VA is not important in predicting aided VA.

Unaided visual acuity (Snellen denominator)

8 10 20 501.1 I . m - 0

<tu1 200
CP I0- m (1982) -- vuavgmata _,w

0 .

S0.9. E ovri8)vulkpu

Z 0.5 0

0 - 50 'D

4 "0.3

0.1 I I I 25

-0.40 -0.20 0.00 0.20 0.40 0.60

Unaided visual acuity (log MAR)

Figure 8. The relationship between NVG to unaided VAs, comparing
observed to predicted results. A simple mathematical
model seems to agree well with laboratory data from
three independent studies.

Because Kim did not report unaided VA, we converted his measured
astigmatism data to unaided VA based on the known relationship
between the two (Peters, 1961). We controlled for between-study
differences in NVG generation by comparing VAs from infinity
focus third generation NVGs to VAs from adjustable focus second
generation NVGs, because VAs have been shown to be similar under
these two conditions (Kotulak and Morse, 1994a). In addition, we

15



modified the exponents of the equation described in the
introduction (Farrell and Booth, 1984) to obtain a better fit of
the data, i. e.,

1 1 1
Rc1' Rj'' RL"''

As can be seen in Figure 8, the predictions based on the modified
equation are in close agreement with the observed results. This
suggests that the Farrell and Booth resolution model is
applicable to the eye-NVG system with only minor modification.
Additional work needs to be done to determine the relationship
between NVG and unaided VA for subjects with unaided VAs beyond
the range of Figure 8.

The military significance of the present work lies with
night vision devices which are either not spectacle compatible or
which have a fixed focus eyepiece. An example of the former is
the full faceplate AN/PVS-5 NVG that is used for ground troops,
and an example of the latter is the helmet mounted display that
is under development for the Comanche helicopter. The AN/PVS-5
has adjustable focus eyepieces, which when set properly, com-
pensate for spherical refractive error (i.e., simple myopia or
hyperopia) but not for astigmatism. The Comanche helmet mounted
display will be spectacle compatible, but will have eyepieces in
which the focus is fixed at infinity. The results of this study,
wnether considered alone or with the works of Kim (1982) and
Hoover (1983), suggest that for either type of device any
decrement in unaided VA produce3 an analogous loss in NVG VA.
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